Interferometric SAR

Mark van der Meijde and Harald van der Werff

With thanks to Ian Brown

INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Key Online References:

- Scientific SAR Users Guide www.asf.alaska.edu/contents.html
- What is imaging radar? (NASA JPL) http://southport.jpl.nasa.gov/desc/ima gingradarv3.html
- Atlantis Scientific / Frank Paul http://www.geo.unizh.ch/~fpaul/sar_th eory.html

Introduction

- Microwave RS is Active or Passive
- These operate at centimetre wavelengths
- The radar waves can penetrate cloud and operate in darkness
- Civilian use began with Seasat in 1979 (miltary uses began in the 1960s)

Wavelengths and Frequencies

P-Band	30-100 cm	0,3-1 GHz
L-Band	15-30 cm	1-2 GHz
S-Band	7,5-15 cm	2-4 GHz
C-Band	3,75-7,5 cm	4-8 GHz
X-Band	2,4-3,75 cm	8-12,5 GHz
Ku-Band	1,67-2,4 cm	12,5-18 GHz
K-Band	1,1-1,67 cm	18-26,5 GHz
Ka-Band	0,75-1,1 cm	26,5-40 GHz

Active Radar- SAR

Synthetic Aperture Radar (SAR) relies on the:

- Ability of an antenna to transmit a brief EM pulse in a precise direction
- Ability to detect, with similar precision, the scattered echo (at much lower power)
- Ability to measure the time delay accurately (thereby deriving the range)
- Ability to scan with the directional beam to examine a wider area
- Ability to undertake spectral analysis of the returned signal to increase resolution (Doppler)

Scanning Configuration of a right-looking SAR

 $D_g = \frac{\lambda R_m}{D_a \cos \eta}$

The swath width is a function of the wavelength, antenna height and incidence angle

Chirp Compression

AIRBORNE PLATFORM

SATELLITE PLATFORM

Range Compression

From Dr J. Van Zyl

Terrain Correction

- Aims at improving image geometry and radiometric properties
- Derives local relief using a Digital Elevation Model (DEM)
- Then synthesises a SAR image from the DEM which is georeferenced to the original
- Output is a corrected image formed from the synthesised SAR and original

Foreshortening, Layover and Shadow

Radar scattering

- When a radar wave encounters a surface scattering or absorption occurs
- Scattering is the redirection of the energy (i.e. Backscattering, reflection or refraction)
- Absorption is the conversion of the enrgy to another state (i.e. To heat)
- *Extinction* of the wave occurs when the radiation is negated through absorption
 and scattering

Scattering Mechanisms

Reflection off a smooth surface The angle of incidence, i, equals the angle of reflection.

Double Bounce (Corner Reflector)

Volumetric Scattering Example scattering in a tree

Scattering off a rough surface The variation in surface height is on the order of the incoming signal's wavelength.

Double Bounce One possible natural occurence reflecting off two smooth surfaces, grass and a freshly-cut tree's stump

Volumetric Scattering In this example the incident radiation is both reflected and refracted/transmitted through a layer of dry snow. The refracted radiation then reflects off underlying ice, scatters off a chunk of ice in the snow, and finally refracts back toward the receiver.

Interferometric SAR

- Complex SAR imagery has both amplitude and phase data
- Phase data is used to calculate the phase difference between two echos to calculate the precise path length
- Hence topography and surface displacement can be calculated from by acquiring data from two points in space....

InSAR geometry

InSAR

- Precise knowledge of the orbit emphemeris allows the calculation of the baseline separating two acquisitions
- The phase difference can then be calcuated to show path length difference and trignometry used to derive surface height
- Accuracies can be on the order of cm's

(SARscape) InSAR processing chain

ITC

Differential Interferometry (DInSAR)

- Normally interferometry utilises two images from different orbits (*repeatpath interferometry*) to create an elevation model
- However, the use of three or four images allows elevation data to be extracted from the interferogram to produce surface displacement or motion
- DInSAR describes the use of multipleinterferogram or *differential interferometry*

DInSAR (example)

- An image pair (a & b) are combined to create an interferogram (ab) showing topography
- 2. A third image (c) is combined with either a or b to create a second interferogram (ac)
- Interferogram ac is subtracted from ab showing change in x, y and z directions dependent on the baseline of the dataset

Baselines

Baselines

- The perpendicular baseline describes the seperation of the two image paths for an interferometric pair
- Long baselines ~300-800 m provide good separation for the derivation of topography
- Short baselines (<100 m) are better for motion detection

- Thus a long baseline of 400 m may be used to create a DEM
- Then a short baseline pair may be acquired to create a horizontal motion map from which topography is removed using the first DEM
- Or, the second pair may also have a long baseline to map topography so that subsidence or motion in the z direction
 can be mapped.

Blåmannsisen, north Norway

A note about coherence

- InSAR requires that a degree of stability is maintained between the image acquisitions
- Low coherence (i.e. A unstable surface such as blowing sand or water) will result in noise
- Coherence can therefore have applications too.

Tectonic modelling

BAM earthquake displacement

